Size control and vacuum-ultraviolet fluorescence of nanosized KMgF3 single crystals prepared using femtosecond laser pulses
نویسندگان
چکیده
We fabricated nanosized KMgF3 single crystals via a dry pulsed laser ablation process using femtosecond laser pulses. The sizes, shapes, and crystallographic properties of the crystals were evaluated by transmission electron microscopy (TEM). Almost all of the particles were spherical with diameters of less than 100 nm, and they were not highly agglomerated. Selected-area electron diffraction and high-resolution TEM analyses showed that the particles were single crystals. Particle diameter was controlled within a wide range by adjusting the Ar ambient gas pressure. Under low gas pressures (1 and 10 Pa), relatively small particles (primarily 10 nm or less) were observed with a high number density. With increasing pressure, the mean diameter increased and the number density drastically decreased. Vacuum-ultraviolet cathodoluminescence was observed at 140-230 nm with blue shift and broadening of spectrum.
منابع مشابه
Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation.
A laser-based tabletop approach to femtosecond time-resolved photoelectron spectroscopy with photons in the vacuum-ultraviolet (VUV) energy range is described. The femtosecond VUV pulses are produced by high-order harmonic generation (HHG) of an amplified femtosecond Ti:sapphire laser system. Two generations of the same setup and results from photoelectron spectroscopy in the gas phase are disc...
متن کاملFemtosecond laser nanomachining initiated by ultraviolet multiphoton ionization.
We report on the experimental results of 300 nm features generated on fused silica using a near-infrared (IR) femtosecond laser pulse initiated by an ultraviolet (UV) pulse. With both pulses at a short (~60 fs) delay, the damage threshold of the UV pulse is only 10% of its normal value. Considerable reduction of UV damage threshold is observed when two pulses are at ± 1.3 ps delay. The damage f...
متن کاملPhase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity.
We demonstrate the generation of phase-coherent frequency combs in the vacuum utraviolet spectral region. The output from a mode-locked laser is stabilized to a femtosecond enhancement cavity with a gas jet at the intracavity focus. The resulting high-peak power of the intracavity pulse enables efficient high-harmonic generation by utilizing the full repetition rate of the laser. Optical-hetero...
متن کاملControl of multiphoton and avalanche ionization using an ultraviolet- infrared pulse train in femtosecond laser micro-/nano-machining of fused silica
We report on the experimental results of microand nanostructures fabricated on the surface of fused silica by a train of two femtosecond laser pulses, a tightly focused 266 nm (ultraviolet, UV) pulse followed by a loosely focused 800 nm (infrared, IR) pulse. By controlling the fluence of each pulse below the damage threshold, microand nanostructures are fabricated using the combined beams. The ...
متن کاملFabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method
In this research zinc oxide (ZnO) nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis), Fourier transform infra-red (FT-IR) and energy dispersive X-ray (EDX) spectroscopy. The structure of nanoparticles was studied using XRD pattern. The c...
متن کامل